[ntpsec commit] Remove util/tg.c, util/tg2.c is better and more portable.
Eric S. Raymond
esr at ntpsec.org
Tue Oct 20 05:20:19 UTC 2015
Module: ntpsec
Branch: master
Commit: 3dcb8503e81aad5a7b91876d08db670df3fe4d41
Changeset: http://git.ntpsec.org/ntpsec/commit/?id=3dcb8503e81aad5a7b91876d08db670df3fe4d41
Author: Eric S. Raymond <esr at thyrsus.com>
Date: Tue Oct 20 01:19:33 2015 -0400
Remove util/tg.c, util/tg2.c is better and more portable.
---
util/README | 10 +-
util/tg.c | 654 ------------------------------------------------------------
2 files changed, 5 insertions(+), 659 deletions(-)
diff --git a/util/README b/util/README
index 8df3917..1ff950f 100644
--- a/util/README
+++ b/util/README
@@ -34,10 +34,10 @@ propdelay.c::
sht.c::
Test program for shared memory refclock.
-tg.c and tg2.c::
- These are tone generators. They make audio signals that emulate WWV
- or IRIG (-B and -E). tg runs on Solaris. tg2 is a clone that runs on
- Linux, FreeBSD, and NetBSD. Read the source for the fine print. tg2
- has a help option available via -h.
+tg2.c::
+ A tone generator; makes audio signals that emulate WWV/H or
+ IRIG. Should run on Solaris, FreeBSD, NetBSD and Linux provised
+ the platform supports the SADA API. Read the source for the fine
+ print. Has a help option available via -h.
// end
diff --git a/util/tg.c b/util/tg.c
deleted file mode 100644
index 64631f0..0000000
--- a/util/tg.c
+++ /dev/null
@@ -1,654 +0,0 @@
-/*
- * tg.c generate WWV or IRIG signals for test
- */
-/*
- * This program can generate audio signals that simulate the WWV/H
- * broadcast timecode. Alternatively, it can generate the IRIG-B
- * timecode commonly used to synchronize laboratory equipment. It is
- * intended to test the WWV/H driver (refclock_wwv.c) and the IRIG
- * driver (refclock_irig.c) in the NTP driver collection.
- *
- * Besides testing the drivers themselves, this program can be used to
- * synchronize remote machines over audio transmission lines or program
- * feeds. The program reads the time on the local machine and sets the
- * initial epoch of the signal generator within one millisecond.
- * Alernatively, the initial epoch can be set to an arbitrary time. This
- * is useful when searching for bugs and testing for correct response to
- * a leap second in UTC. Note however, the ultimate accuracy is limited
- * by the intrinsic frequency error of the codec sample clock, which can
- * reach well over 100 PPM.
- *
- * The default is to route generated signals to the line output
- * jack; the s option on the command line routes these signals to the
- * internal speaker as well. The v option controls the speaker volume
- * over the range 0-255. The signal generator by default uses WWV
- * format; the h option switches to WWVH format and the i option
- * switches to IRIG-B format.
- *
- * Once started the program runs continuously. The default initial epoch
- * for the signal generator is read from the computer system clock when
- * the program starts. The y option specifies an alternate epoch using a
- * string yydddhhmmss, where yy is the year of century, ddd the day of
- * year, hh the hour of day and mm the minute of hour. For instance,
- * 1946Z on 1 January 2006 is 060011946. The l option lights the leap
- * warning bit in the WWV/H timecode, so is handy to check for correct
- * behavior at the next leap second epoch. The remaining options are
- * specified below under the Parse Options heading. Most of these are
- * for testing.
- *
- * During operation the program displays the WWV/H timecode (9 digits)
- * or IRIG timecode (20 digits) as each new string is constructed. The
- * display is followed by the BCD binary bits as transmitted. Note that
- * the transmissionorder is low-order first as the frame is processed
- * left to right. For WWV/H The leap warning L preceeds the first bit.
- * For IRIG the on-time marker M preceeds the first (units) bit, so its
- * code is delayed one bit and the next digit (tens) needs only three
- * bits.
- *
- * The program has been tested with the Sun Blade 1500 running Solaris
- * 10, but not yet with other machines. It uses no special features and
- * should be readily portable to other hardware and operating systems.
- */
-#include <stdio.h>
-#include <stdlib.h>
-#include <time.h>
-#include <sys/audio.h>
-#include <math.h>
-#include <errno.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <string.h>
-#include <unistd.h>
-
-#define SECOND 8000 /* one second of 125-us samples */
-#define BUFLNG 400 /* buffer size */
-#define DEVICE "/dev/audio" /* default audio device */
-#define WWV 0 /* WWV encoder */
-#define IRIG 1 /* IRIG-B encoder */
-#define OFF 0 /* zero amplitude */
-#define LOW 1 /* low amplitude */
-#define HIGH 2 /* high amplitude */
-#define DATA0 200 /* WWV/H 0 pulse */
-#define DATA1 500 /* WWV/H 1 pulse */
-#define PI 800 /* WWV/H PI pulse */
-#define M2 2 /* IRIG 0 pulse */
-#define M5 5 /* IRIG 1 pulse */
-#define M8 8 /* IRIG PI pulse */
-
-/*
- * Companded sine table amplitude 3000 units
- */
-int c3000[] = {1, 48, 63, 70, 78, 82, 85, 89, 92, 94, /* 0-9 */
- 96, 98, 99, 100, 101, 101, 102, 103, 103, 103, /* 10-19 */
- 103, 103, 103, 103, 102, 101, 101, 100, 99, 98, /* 20-29 */
- 96, 94, 92, 89, 85, 82, 78, 70, 63, 48, /* 30-39 */
- 129, 176, 191, 198, 206, 210, 213, 217, 220, 222, /* 40-49 */
- 224, 226, 227, 228, 229, 229, 230, 231, 231, 231, /* 50-59 */
- 231, 231, 231, 231, 230, 229, 229, 228, 227, 226, /* 60-69 */
- 224, 222, 220, 217, 213, 210, 206, 198, 191, 176}; /* 70-79 */
-/*
- * Companded sine table amplitude 6000 units
- */
-int c6000[] = {1, 63, 78, 86, 93, 98, 101, 104, 107, 110, /* 0-9 */
- 112, 113, 115, 116, 117, 117, 118, 118, 119, 119, /* 10-19 */
- 119, 119, 119, 118, 118, 117, 117, 116, 115, 113, /* 20-29 */
- 112, 110, 107, 104, 101, 98, 93, 86, 78, 63, /* 30-39 */
- 129, 191, 206, 214, 221, 226, 229, 232, 235, 238, /* 40-49 */
- 240, 241, 243, 244, 245, 245, 246, 246, 247, 247, /* 50-59 */
- 247, 247, 247, 246, 246, 245, 245, 244, 243, 241, /* 60-69 */
- 240, 238, 235, 232, 229, 226, 221, 214, 206, 191}; /* 70-79 */
-
-/*
- * Decoder operations at the end of each second are driven by a state
- * machine. The transition matrix consists of a dispatch table indexed
- * by second number. Each entry in the table contains a case switch
- * number and argument.
- */
-struct progx {
- int sw; /* case switch number */
- int arg; /* argument */
-};
-
-/*
- * Case switch numbers
- */
-#define DATA 0 /* send data (0, 1, PI) */
-#define COEF 1 /* send BCD bit */
-#define DEC 2 /* decrement to next digit */
-#define MIN 3 /* minute pulse */
-#define LEAP 4 /* leap warning */
-#define DUT1 5 /* DUT1 bits */
-#define DST1 6 /* DST1 bit */
-#define DST2 7 /* DST2 bit */
-
-/*
- * WWV/H format (100-Hz, 9 digits, 1 m frame)
- */
-struct progx progx[] = {
- {MIN, 800}, /* 0 minute sync pulse */
- {DATA, DATA0}, /* 1 */
- {DST2, 0}, /* 2 DST2 */
- {LEAP, 0}, /* 3 leap warning */
- {COEF, 1}, /* 4 1 year units */
- {COEF, 2}, /* 5 2 */
- {COEF, 4}, /* 6 4 */
- {COEF, 8}, /* 7 8 */
- {DEC, DATA0}, /* 8 */
- {DATA, PI}, /* 9 p1 */
- {COEF, 1}, /* 10 1 minute units */
- {COEF, 2}, /* 11 2 */
- {COEF, 4}, /* 12 4 */
- {COEF, 8}, /* 13 8 */
- {DEC, DATA0}, /* 14 */
- {COEF, 1}, /* 15 10 minute tens */
- {COEF, 2}, /* 16 20 */
- {COEF, 4}, /* 17 40 */
- {COEF, 8}, /* 18 80 (not used) */
- {DEC, PI}, /* 19 p2 */
- {COEF, 1}, /* 20 1 hour units */
- {COEF, 2}, /* 21 2 */
- {COEF, 4}, /* 22 4 */
- {COEF, 8}, /* 23 8 */
- {DEC, DATA0}, /* 24 */
- {COEF, 1}, /* 25 10 hour tens */
- {COEF, 2}, /* 26 20 */
- {COEF, 4}, /* 27 40 (not used) */
- {COEF, 8}, /* 28 80 (not used) */
- {DEC, PI}, /* 29 p3 */
- {COEF, 1}, /* 30 1 day units */
- {COEF, 2}, /* 31 2 */
- {COEF, 4}, /* 32 4 */
- {COEF, 8}, /* 33 8 */
- {DEC, DATA0}, /* 34 not used */
- {COEF, 1}, /* 35 10 day tens */
- {COEF, 2}, /* 36 20 */
- {COEF, 4}, /* 37 40 */
- {COEF, 8}, /* 38 80 */
- {DEC, PI}, /* 39 p4 */
- {COEF, 1}, /* 40 100 day hundreds */
- {COEF, 2}, /* 41 200 */
- {COEF, 4}, /* 42 400 (not used) */
- {COEF, 8}, /* 43 800 (not used) */
- {DEC, DATA0}, /* 44 */
- {DATA, DATA0}, /* 45 */
- {DATA, DATA0}, /* 46 */
- {DATA, DATA0}, /* 47 */
- {DATA, DATA0}, /* 48 */
- {DATA, PI}, /* 49 p5 */
- {DUT1, 8}, /* 50 DUT1 sign */
- {COEF, 1}, /* 51 10 year tens */
- {COEF, 2}, /* 52 20 */
- {COEF, 4}, /* 53 40 */
- {COEF, 8}, /* 54 80 */
- {DST1, 0}, /* 55 DST1 */
- {DUT1, 1}, /* 56 0.1 DUT1 fraction */
- {DUT1, 2}, /* 57 0.2 */
- {DUT1, 4}, /* 58 0.4 */
- {DATA, PI}, /* 59 p6 */
- {DATA, DATA0}, /* 60 leap */
-};
-
-/*
- * IRIG format except first frame (1000 Hz, 20 digits, 1 s frame)
- */
-struct progx progy[] = {
- {COEF, 1}, /* 0 1 units */
- {COEF, 2}, /* 1 2 */
- {COEF, 4}, /* 2 4 */
- {COEF, 8}, /* 3 8 */
- {DEC, M2}, /* 4 im */
- {COEF, 1}, /* 5 10 tens */
- {COEF, 2}, /* 6 20 */
- {COEF, 4}, /* 7 40 */
- {COEF, 8}, /* 8 80 */
- {DEC, M8}, /* 9 pi */
-};
-
-/*
- * IRIG format first frame (1000 Hz, 20 digits, 1 s frame)
- */
-struct progx progz[] = {
- {MIN, M8}, /* 0 pi (second) */
- {COEF, 1}, /* 1 1 units */
- {COEF, 2}, /* 2 2 */
- {COEF, 4}, /* 3 4 */
- {COEF, 8}, /* 4 8 */
- {DEC, M2}, /* 5 im */
- {COEF, 1}, /* 6 10 tens */
- {COEF, 2}, /* 7 20 */
- {COEF, 4}, /* 8 40 */
- {DEC, M8}, /* 9 pi */
-};
-
-/*
- * Forward declarations
- */
-void sec(int); /* send second */
-void digit(int); /* encode digit */
-void peep(int, int, int); /* send cycles */
-void delay(int); /* delay samples */
-
-/*
- * Global variables
- */
-char buffer[BUFLNG]; /* output buffer */
-int bufcnt = 0; /* buffer counter */
-int second = 0; /* seconds counter */
-int fd; /* audio codec file descriptor */
-int tone = 1000; /* WWV sync frequency */
-int level = AUDIO_MAX_GAIN / 8; /* output level */
-int port = AUDIO_LINE_OUT; /* output port */
-int encode = WWV; /* encoder select */
-int leap = 0; /* leap indicator */
-int dst = 0; /* winter/summer time */
-int dut1 = 0; /* DUT1 correction (sign, magnitude) */
-int utc = 0; /* option epoch */
-
-/*
- * Main program
- */
-int
-main(
- int argc, /* command line options */
- char **argv /* poiniter to list of tokens */
- )
-{
- struct timeval tv; /* system clock at startup */
- audio_info_t info; /* Sun audio structure */
- struct tm *tm = NULL; /* structure returned by gmtime */
- char device[50]; /* audio device */
- char code[100]; /* timecode */
- int rval, temp, arg, sw, ptr;
- int minute, hour, day, year;
- int i;
-
- /*
- * Parse options
- */
- strlcpy(device, DEVICE, sizeof(device));
- year = 0;
- while ((temp = getopt(argc, argv, "a:dhilsu:v:y:")) != -1) {
- switch (temp) {
-
- case 'a': /* specify audio device (/dev/audio) */
- strlcpy(device, optarg, sizeof(device));
- break;
-
- case 'd': /* set DST for summer (WWV/H only) */
- dst++;
- break;
-
- case 'h': /* select WWVH sync frequency */
- tone = 1200;
- break;
-
- case 'i': /* select irig format */
- encode = IRIG;
- break;
-
- case 'l': /* set leap warning bit (WWV/H only) */
- leap++;
- break;
-
- case 's': /* enable speaker */
- port |= AUDIO_SPEAKER;
- break;
-
- case 'u': /* set DUT1 offset (-7 to +7) */
- sscanf(optarg, "%d", &dut1);
- if (dut1 < 0)
- dut1 = abs(dut1);
- else
- dut1 |= 0x8;
- break;
-
- case 'v': /* set output level (0-255) */
- sscanf(optarg, "%d", &level);
- break;
-
- case 'y': /* set initial date and time */
- sscanf(optarg, "%2d%3d%2d%2d", &year, &day,
- &hour, &minute);
- utc++;
- break;
-
- defult:
- printf("invalid option %c\n", temp);
- break;
- }
- }
-
- /*
- * Open audio device and set options
- */
- fd = open("/dev/audio", O_WRONLY);
- if (fd <= 0) {
- printf("audio open %s\n", strerror(errno));
- exit(1);
- }
- rval = ioctl(fd, AUDIO_GETINFO, &info);
- if (rval < 0) {
- printf("audio control %s\n", strerror(errno));
- exit(0);
- }
- info.play.port = port;
- info.play.gain = level;
- info.play.sample_rate = SECOND;
- info.play.channels = 1;
- info.play.precision = 8;
- info.play.encoding = AUDIO_ENCODING_ULAW;
- printf("port %d gain %d rate %d chan %d prec %d encode %d\n",
- info.play.port, info.play.gain, info.play.sample_rate,
- info.play.channels, info.play.precision,
- info.play.encoding);
- ioctl(fd, AUDIO_SETINFO, &info);
-
- /*
- * Unless specified otherwise, read the system clock and
- * initialize the time.
- */
- if (!utc) {
- struct tm tmbuf;
- gettimeofday(&tv, NULL);
- tm = gmtime_r(&tv.tv_sec, &tmbuf);
- minute = tm->tm_min;
- hour = tm->tm_hour;
- day = tm->tm_yday + 1;
- year = tm->tm_year % 100;
- second = tm->tm_sec;
-
- /*
- * Delay the first second so the generator is accurately
- * aligned with the system clock within one sample (125
- * microseconds ).
- */
- delay(SECOND - tv.tv_usec * 8 / 1000);
- }
- memset(code, 0, sizeof(code));
- switch (encode) {
-
- /*
- * For WWV/H and default time, carefully set the signal
- * generator seconds number to agree with the current time.
- */
- case WWV:
- printf("year %d day %d time %02d:%02d:%02d tone %d\n",
- year, day, hour, minute, second, tone);
- snprintf(code, sizeof(code), "%01d%03d%02d%02d%01d",
- year / 10, day, hour, minute, year % 10);
- printf("%s\n", code);
- ptr = 8;
- for (i = 0; i <= second; i++) {
- if (progx[i].sw == DEC)
- ptr--;
- }
- break;
-
- /*
- * For IRIG the signal generator runs every second, so requires
- * no additional alignment.
- */
- case IRIG:
- printf("sbs %x year %d day %d time %02d:%02d:%02d\n",
- 0, year, day, hour, minute, second);
- break;
- }
-
- /*
- * Run the signal generator to generate new timecode strings
- * once per minute for WWV/H and once per second for IRIG.
- */
- while(1) {
-
- /*
- * Crank the state machine to propagate carries to the
- * year of century. Note that we delayed up to one
- * second for alignment after reading the time, so this
- * is the next second.
- */
- second = (second + 1) % 60;
- if (second == 0) {
- minute++;
- if (minute >= 60) {
- minute = 0;
- hour++;
- }
- if (hour >= 24) {
- hour = 0;
- day++;
- }
-
- /*
- * At year rollover check for leap second.
- */
- if (day >= (year & 0x3 ? 366 : 367)) {
- if (leap) {
- sec(DATA0);
- printf("\nleap!");
- leap = 0;
- }
- day = 1;
- year++;
- }
- if (encode == WWV) {
- snprintf(code, sizeof(code),
- "%01d%03d%02d%02d%01d", year / 10,
- day, hour, minute, year % 10);
- printf("\n%s\n", code);
- ptr = 8;
- }
- }
- if (encode == IRIG) {
- snprintf(code, sizeof(code),
- "%04x%04d%06d%02d%02d%02d", 0, year, day,
- hour, minute, second);
- printf("%s\n", code);
- ptr = 19;
- }
-
- /*
- * Generate data for the second
- */
- switch(encode) {
-
- /*
- * The IRIG second consists of 20 BCD digits of width-
- * modulateod pulses at 2, 5 and 8 ms and modulated 50
- * percent on the 1000-Hz carrier.
- */
- case IRIG:
- for (i = 0; i < 100; i++) {
- if (i < 10) {
- sw = progz[i].sw;
- arg = progz[i].arg;
- } else {
- sw = progy[i % 10].sw;
- arg = progy[i % 10].arg;
- }
- switch(sw) {
-
- case COEF: /* send BCD bit */
- if (code[ptr] & arg) {
- peep(M5, 1000, HIGH);
- peep(M5, 1000, LOW);
- printf("1");
- } else {
- peep(M2, 1000, HIGH);
- peep(M8, 1000, LOW);
- printf("0");
- }
- break;
-
- case DEC: /* send IM/PI bit */
- ptr--;
- printf(" ");
- peep(arg, 1000, HIGH);
- peep(10 - arg, 1000, LOW);
- break;
-
- case MIN: /* send data bit */
- peep(arg, 1000, HIGH);
- peep(10 - arg, 1000, LOW);
- printf("M ");
- break;
- }
- if (ptr < 0)
- break;
- }
- printf("\n");
- break;
-
- /*
- * The WWV/H second consists of 9 BCD digits of width-
- * modulateod pulses 200, 500 and 800 ms at 100-Hz.
- */
- case WWV:
- sw = progx[second].sw;
- arg = progx[second].arg;
- switch(sw) {
-
- case DATA: /* send data bit */
- sec(arg);
- break;
-
- case COEF: /* send BCD bit */
- if (code[ptr] & arg) {
- sec(DATA1);
- printf("1");
- } else {
- sec(DATA0);
- printf("0");
- }
- break;
-
- case LEAP: /* send leap bit */
- if (leap) {
- sec(DATA1);
- printf("L ");
- } else {
- sec(DATA0);
- printf(" ");
- }
- break;
-
- case DEC: /* send data bit */
- ptr--;
- sec(arg);
- printf(" ");
- break;
-
- case MIN: /* send minute sync */
- peep(arg, tone, HIGH);
- peep(1000 - arg, tone, OFF);
- break;
-
- case DUT1: /* send DUT1 bits */
- if (dut1 & arg)
- sec(DATA1);
- else
- sec(DATA0);
- break;
-
- case DST1: /* send DST1 bit */
- ptr--;
- if (dst)
- sec(DATA1);
- else
- sec(DATA0);
- printf(" ");
- break;
-
- case DST2: /* send DST2 bit */
- if (dst)
- sec(DATA1);
- else
- sec(DATA0);
- break;
- }
- }
- }
-}
-
-
-/*
- * Generate WWV/H 0 or 1 data pulse.
- */
-void sec(
- int code /* DATA0, DATA1, PI */
- )
-{
- /*
- * The WWV data pulse begins with 5 ms of 1000 Hz follwed by a
- * guard time of 25 ms. The data pulse is 170, 570 or 770 ms at
- * 100 Hz corresponding to 0, 1 or position indicator (PI),
- * respectively. Note the 100-Hz data pulses are transmitted 6
- * dB below the 1000-Hz sync pulses. Originally the data pulses
- * were transmited 10 dB below the sync pulses, but the station
- * engineers increased that to 6 dB because the Heath GC-1000
- * WWV/H radio clock worked much better.
- */
- peep(5, tone, HIGH); /* send seconds tick */
- peep(25, tone, OFF);
- peep(code - 30, 100, LOW); /* send data */
- peep(1000 - code, 100, OFF);
-}
-
-
-/*
- * Generate cycles of 100 Hz or any multiple of 100 Hz.
- */
-void peep(
- int pulse, /* pulse length (ms) */
- int freq, /* frequency (Hz) */
- int amp /* amplitude */
- )
-{
- int increm; /* phase increment */
- int i, j;
-
- if (amp == OFF || freq == 0)
- increm = 10;
- else
- increm = freq / 100;
- j = 0;
- for (i = 0 ; i < pulse * 8; i++) {
- switch (amp) {
-
- case HIGH:
- buffer[bufcnt++] = ~c6000[j];
- break;
-
- case LOW:
- buffer[bufcnt++] = ~c3000[j];
- break;
-
- default:
- buffer[bufcnt++] = ~0;
- }
- if (bufcnt >= BUFLNG) {
- write(fd, buffer, BUFLNG);
- bufcnt = 0;
- }
- j = (j + increm) % 80;
- }
-}
-
-
-/*
- * Delay for initial phasing
- */
-void delay (
- int delay /* delay in samples */
- )
-{
- int samples; /* samples remaining */
-
- samples = delay;
- memset(buffer, 0, BUFLNG);
- while (samples >= BUFLNG) {
- write(fd, buffer, BUFLNG);
- samples -= BUFLNG;
- }
- write(fd, buffer, samples);
-}
More information about the vc
mailing list